How to Read an Engineering Research Paper

William G. Griswold
with additions by Nadir Weibel
(based on some ideas from Ali Khayam)
CSE, UC San Diego

Reading research papers effectively is challenging. These papers are written in a very condensed style because of page limitations and the intended audience, which is assumed to already know the area well. Moreover, the reasons for writing the paper may be different than the reasons the paper has been assigned, meaning you have to work harder to find the content that you are interested in. Finally, your time is very limited, so you may not have time to read every word of the paper or read it several times to extract all the nuances. For all these reasons, reading a research paper can require a special approach.

To develop an effective reading style for research papers, it can help to know two things: what you should get out of the paper, and where that information is located in the paper. First, I'll describe how a typical research paper is put together.

Despite a paper's condensed form, it is likely repetitive. The introduction will state not only the motivations behind the work, but also outline the solution. Often this may be all the expert requires from the paper. The body of the paper states the authors' solution to the problem in detail, and should also describe a detailed evaluation of the solution in terms of arguments or an experiment. Finally, the paper will conclude with a recap, including a discussion of the primary contributions. A paper will also discuss related work to some degree. Because of the repetition in these papers at different levels of detail and from different perspectives, it may be desirable, to read the paper “out of order” or to skip certain sections.

The typical structure of an engineering research paper is following:

1. **Abstract**: Describes the main idea/proposed solution of the paper in a few words
2. **Introduction**: Expands the abstract, also discusses limitations of existing work, and how the proposed solution has been evaluated
3. **Related Work**: Describes what has already taken place in this area, and how is this paper different
4. **Background** (Optional): It is used if concepts from a different domain are used
5. **System or Model**: Highlights the basic system-level model and assumptions
6. **Contribution**: One or two sections describing the contributions of the work
7. **Performance or Evaluation**: Performance comparison with existing work
8. **Conclusions**: Salient findings
9. **References**: Bibliography
The questions you want to have answered by reading a paper are the following:

1. **What are motivations for this work?** For a research paper, there is an expectation that a problem has been solved that no one else has published in the literature. This problem intrinsically has two parts. The first is often unstated, what I call the **people problem**. The people problem is the benefits that are desired in the world at large; for example some issue of quality of life, such as saved time or increased safety. The second part is the **technical problem**, which is: **why doesn't the people problem have a trivial solution?** There is also an implication that previous solutions to the problem are inadequate. **What are the previous solutions and why are they inadequate?** Finally, the motivation and statement of the problem are distilled into a **research question** that can be addressed within the confines of this particular paper. Oftentimes, one or more of these elements are not explicitly stated, making your job more difficult.

2. **What is the proposed solution?** This is also called the **hypothesis** or **idea**. There should also be an answer to the question **why is it believed that this solution will work, and be better than previous solutions?** There should also be a discussion about **how the solution is achieved (designed and implemented)** or is at least achievable.

3. **What is the work's evaluation of the proposed solution?** An idea alone is usually not adequate for publication of a research paper. This is the concrete engagement of the research question. What argument, implementation, and/or experiment makes the case for the value of the ideas? What benefits or problems are identified?

4. **What is your analysis of the identified problem, idea and evaluation?** Is this a good idea? What flaws do you perceive in the work? What are the most interesting points made? What are the most controversial ideas or points made? For work that has practical implications, you also want to ask: **Is this really going to work, who would want it, what will it take to give it to them, and when might it become a reality?**

5. **What are the contributions?** The contributions in a paper may be many and varied. Beyond the insights on the research question, a few additional possibilities include: ideas, software, experimental techniques, or an area survey.

6. **What are future directions for this research?** Not only what future directions do the authors identify, but what ideas did you come up with while reading the paper? Sometimes these may be identified as shortcomings or other critiques in the current work.

7. **What questions are you left with?** What questions would you like to raise in an open discussion of the work? What do you find confusing or difficult to understand? By taking the time to list several, you will be forced to think more deeply about the work.

8. **What is your take-away message from this paper?** Sum up the main implication of the paper from your perspective. This is useful for very quick review and refreshing your memory. It also forces you to try to identify the essence of the work.
As you read or skim a paper, you should actively attempt to answer the above questions. Presumably, the introduction should provide motivation. The introduction and conclusion may discuss the solutions and evaluation at a high level. Future work is likely in the concluding part of the paper. The details of the solution and the evaluation should be in the body of the paper. You may find it productive to try to answer each question in turn, writing your answer down. I recommend that you keep a notebook on all the papers you read, or mark-up the papers themselves. You could use the standard two-page form that you can fill out for each paper. In practice, you are not done reading a paper until you can answer all the questions.

Also, you should be aware of the context of the paper in relation to the other papers in the class. Often a paper will represent a generalization, new direction, or contradiction to earlier papers.

Taking time to writing down questions you have about the paper will often surface thoughts that were not initially articulated. Perhaps the paper was vague on key issues, or ignored issues that you think are important. If you come to class with such questions, you are prepared to counter or preempt my own questions.

A well-annotated paper is worth its weight in gold, as it not only contains the content of the paper, but your assessment of its value to you.

Advice on note taking. It is much better to annotate the paper directly. The paper is a rich canvas on which to layer your thoughts. Here is how you should approach the reading and mark-up process:

- Highlight important comments as you go. Using a highlighter, as opposed to underlining, can really help key sentences "pop out" at you when you return to review the paper later.
- Mark the important paragraphs of the paper according to motivation/problem, idea/solution, their evaluation, and contributions.
- On the front of the paper, write down the take-away message.
- On the front of the paper, or near the end, write down your key questions. Other questions may be written in the margins as you read.
- Try to answer the questions for yourself, as best you can. Use Google or other sources as appropriate.

Until you have been able to complete the above process, it is likely that you have not yet thought critically enough about the paper. A second pass over the paper is sometimes required to have it all come together for you. To help you further structure your reading and note-taking activities, you might want to follow this rubric, using it as a kind of check list.
Practical Considerations

You should read the paper at least twice. The first time you are looking to get the big picture, while the second one, you are trying to understand the details.

Getting the big picture

- Read the Abstract and Introduction carefully
- Skim through the rest of the paper
- Pay special attention to results (tables, figures, etc.) and discussions on results
- Find answers for the following questions:
 a) What problem is the paper trying to solve?
 → Highlight three to four lines
 b) What are the limitations of prior work?
 → Highlight maximum two to three lines
 c) How does this paper solve the problem? What is the paper’s contribution?
 → Highlight three to five lines
 d) How is the proposed solution evaluated? What kinds of data/experiments were conducted?
 → Highlight two to three words here

Getting the details

- Read the System / Model carefully
 - The whole paper is going to be based on this model
- Understand the gist of the contribution/proposal
 - Does it make sense?
 - Do you think it will work?
 - How will the proposal be evaluated?
- Don’t try to read all the math/technical details in one go:
 - Read the assumptions and system model
 - Try to work out a solution to the problem
- Is the evaluation fair and comprehensive?
 - Try to find the next paper you want to read from this section
- Understand the results
 - Do not miss a single figure and table
 - Find the corresponding discussions in the paper and read them thoroughly

When you are done with reading try to retain:
- The problem
- The basic idea of the proposed solution
- Your personal notes on the paper’s mathematics
- Shortcomings of the proposed approach
Finally, ask yourself:
• What is the message you take away from this paper?
• Are you convinced that the paper attempted an important problem?
 o If your answer is NO, Justify it!
• Are you convinced that the paper proposed a viable solution?